Course Type	Course Code	Name of the Course			P	Credits
DC	NCSC508	Algorithmic Graph Theory	3	0	0	3

Course Objective

- To study graphs from an algorithmic perspective.
- The focus is on understanding the basic properties of graphs that can be used to design efficient algorithms for computer science/IT applications.

Learning Outcomes

At the end of the course, the students will be able to:

- Handle combinatorial and graph problems using effective algorithmic techniques.
- Formulate and analyze problems under the framework of graph theory.
- Design efficient algorithms for various optimization problems on graphs.

Unit No.	Topics to be Covered		Learning Outcome			
1	Introduction to graphs and algorithmic complexity: Graph representation (Adjacency Matrix, Adjacency List) Time & space complexity analysis: P, NP, and NP-hard, polynomial reductions, 2-SAT problem, 3-SAT problem Graph traversal algorithms (DFS, BFS)	,	Students will learn the basics of graphs, their representation in data structures and traversals			
2	Shortest path algorithms: Single-Source - Dijkstra's algorithm, Bellman-Ford algorithm All-Pairs Shortest Paths - Floyd-Warshall algorithm, Johnson's algorithm	4	Students will learn algorithms used to find the shortest paths.			
3	Spanning trees: MST - Prim's algorithm, Kruskal's algorithm, Applications of MSTs Branching, connectivity, circuits, cut-sets	5	Students will pick up concepts of trees and related applications			
4	Planar graphs: Introduction, basic properties, examples Planar embeddings and faces Characterization of planarity (Kuratowski's theorem) Planar graph parameters (genus, crossing numbers, thickness) Planarity testing algorithms	5	Students will learn about the important aspects of planar graphs			
5	Networks and flows: Menger's theorem Maximizing flow in graph networks, Ford- Fulkerson algorithm, Edmonds-Karp algorithm, Minimum cost flow	4	The graph cut techniques have wide applications - the students will learn salient aspects of that			

6	Matching: maximum cardinality matching, maximum weight matching, perfect matching		Matching is another very important part of graph algorithms and the students will learn them			
7	7 Euler tours and Hamiltonian cycles: counting Eulerian tours, finding all Hamiltonian cycles using matricial products, 2-factors		Students will learn about Euler and Hamiltonian graphs			
8	Graph coloring: dominating set, edge coloring, vertex coloring, chromatic polynomial, face coloring, 4-color theorem, 5-color theorem		Students will learn how to solve problems under the framework of graph coloring			
9	Graph problems and intractability: Cook's theorem, vertex covering, independent sets and cliques		Students will learn about vertex and edge independent sets, covering sets			
10	Recent research Trends, Real-world applications in social networks, bioinformatics, and computer networks Open problems and challenges in the field Guidance on potential research directions		Students will get introduced to some recent research going on in this field and their practical applications			
	Total					

Textbooks:

1. Algorithmic Graph Theory by Alan Gibbons, Cambridge University Press

Reference Books:

- 1. Algorithmic Graph Theory and Perfect Graphs by Martin Charles Golumbic, North Holland
- 2. Graph Theoretic Algorithms, Therese Biedl, U of Waterloo
- 3. Advanced Topics in Graph Algorithms, Ron Shamir, Tel Aviv U.